CYBER THREAT ANALYSIS

REvil - Sodinokibi

Technical analysis and Threat Intelligence Report

Article written by:

Gianfranco Tonello TG SOft d‘
Michele Zuin
Federico Girotto

Securlty Software Specialist
ANTIVIRUS - ANTISPYWARE + ANTIMALWARE _I_AIMI

S E N T
www.tgsoft.itERCEN

CTA-2019-06-24
Last revision: 2019-07-17

REvil - Sodinokibi
CTA-2019-06-24 - Last revision: 2019-07-17

Summary
Taid oY [UTei o] o EEU OO UPPP P PPPPUPPPPPN 5
Tl {=Totd o o VA= (o] SO PP UPPPUPPPPPUPPPPPN 5
Sodinokibi RANSOMWAIE ANGIYSYS ...evvieiiieeie e e e et e e e e e e e e e e et eeeeeeaeesesstaaaaaeaeeeessssnnnaeeaeeessssnnnnn 7
Calculate the private and PUBIIC KEYScouuieiiee et e e e e et e e e e e e e e ettt e e e e e e e eaataaaaeeeas 9
S S A D1 2= I 6 1 [U1 R 11
(O G D L = I 4 8 (o A U] IS 13
Y I Y =Y T T D USSR 13
Y o I Y 2) - | oSSR 14
RN SO IS U O L. s 15
Terminate Processes and delete SHAadoW COPY.. .. i e et cre e e e e e e e et e e e e e e e esattnaeeeaaaenans 15
AT 2T o 1= 15
LTSIy o Yol Y] o] 1 Lo o ISP 15
D LT (e o I 10 0 T <L SRR 18
L0 =T =T PP 19
T Yo T 0 g T oY= 1Y/ 0 1= o | S 20
[(oYY Y Ae [0 ToTyNe [To oY/ oY g TRV o] o S P 20
V= £ [o] o TP PP PPPPPPPPPPPPPP 22
RV L= T Lo o T PP P TP P PP PP PPPPPPPPPPPPPPPPPRt 22
RV T Lo o T TP P TP P PP PP P PPPPPPPPPPPPPPPPRt 23
L= 0 = {2 25
L6013 ol [V o TR PP PP PP PPPTTPPPP 27
1@ L PP U SO P PP OTPPPOPUPP 27

REvil - Sodinokibi
CTA-2019-06-24 - Last revision: 2019-07-17

Introduction

Sodinokibi ransomware, also known as REvil, made it first appearance in April 2019, where it looks to exploit the
Oracle WebLogic Server vulnerability to propagate itself.

C.R.A.M. (Research Center Anti-Malware) of TG Soft has analyzed ransomware evolution in the last few months.

In Italy it made first appearance in Mat 24" 2019, with a RDP attack, as 8 1o son

we posted in the tweet of May 28™ 2019: Ransomware #sodinokibi attack via RDP
MDS:

The authors of Sodinokibi ransomware, even if they are the first versions DB42F17991A7BA10218649B978D78674

IP attacker RDP: 151.106.56[.]254

of their creation, seem to have a long experience in this threats of cyber-
crime.

\ Vi

pinComputer

Some researchers have identified the similarities with GandCrab
ransomware, whose project was shut down in beginning June. It seems
that Sodinokibi ransomware is the right candidate to fill the hole left
behind GandCrab.

s s POO > COOTS

Infection Vector

Sodinokibi ransomware uses different methods of propagation:

e QOracle WeblLogic Server Vulnerability
e RDP attacks

e Spam Campaigns

e Watering hole

e Exploit kit and malvertising

In Italy, we have observed that Sodinokibi ransomware used various methods of propagation. All such methods
have been found in Italy except Oracle WebLogic Server vulnerability.

The first attack that we have record was on 24™" May 2019, in this case the infection vector was through RDP
attack. This kind of infection vector execute a brute force on credentials, it has already been used by other
ransomware as Dharma.

Interestingly, the IP 151.106.56[.]254 used by cyber criminal to access via RDP was the same IP identified in other
RDP attacks in June of this year.

Affiliates have used spam campaigns to distributed Sodinokibi ransomware, that was recorded in June. A new
campaign was discovered which deals:

e Booking.com
e DHL

“Booking.com” campaign in the summer months, is very apt choose with the summer holiday season approaches,
it may induce the victims to open the attachment.

In the images below, we can see the two malspam campaigns of Sodinokibi.

Gianfranco Tonello | C.R.A.M. Centro Ricerche Anti-Malware

Booking.com - New booking! (1571165841, Monday, 17 June 2019) - Messaggio (HTML) - o x

v @

) DHL Pacco Ritardato. - Mozilla Thunderbird - o : &

Dz DHL <emai om> ¢y © Rispondi % Rispondiatutti v - Inoltra Altro v,
10 DHL Pacco Ritardato.

19/06/2019, 13:41
Inviato: lunedi 17/06/2019 2350

~ DHL <adm om> f

Ce
Qugetto: _ Booking.com - New booking! (1571165341, Monday, 17 June 2019) —
-] Messaggio | #]Baoking.com - 1571165641.doc

SRESY

il ——

Booking

Attenzione
Booking.com - New booking! (1571165841, Monday, 17 June 2018)

Dear Customer,

Stato dell'ordine: Ritardata
You just received a new booking from a Booking.com guest. Servizio: Spedizione Espressa
Numero di pacco: U163815219N
Assicurazione: S|

Kind regards, Numero di tracking: 6274827364

Please review the new booking details attached to this e-mail

The Booking.com Team

Si prega di /7 pare il file dell
allegata (PDF) per i dettagli del pacco.

Grazie per aver utilizzato | nostri servizi.
DHL globale.

(€) 2015 Copyright DHL INC 2013, Al Rights Reserved.

‘v @ 1 allegato: DHL Ritardato.zip [Salva v

|8 DHL Ritardatozip 24148

7] sockingcom ey - =

In Italy the first case of watering hole was recorded on website “winrar.it” a distributor of WinRar in Italy. For the
whole day on Wednesday the 19" June was downloaded Sodinokibi instead of setup of WinRar.

In 2016 “winrar.it” website was already attacked by APT StrongPity, here too this was watering hole attack, in
which the setup of WinRar was modified to include and downloaded also StrongPity spy malware.

If in 2016 the attack on “winrar.it” was organized by a professional cyber-espionage organization, in the attack of
this year the attackers have replaced the setup of WinRar with Sodinokibi. Who downloaded WinRar in the
afternoon of 19" June, could find something strange in the downloaded file, the icons, actually, are not like the
WinRar ones, as we can see in the figures below:

f-*""':_"-'w
WinRAR-x6 WinRAR-x6
4-5711t.exe 4-571it.exe

In addition, the execution of file does not downloaded WinRar, as has been the case of StronPity ransomware.

Attackers have poorly exploited the watering hole attack to winrar.it.

In other cases involving the spread of Sodinokibi, registered in Italy on 7™ June 2019, were utilized malvertising
attack .

The authors of Sodinokibi seem to be very active in spreading the ransomware.

REvil - Sodinokibi
CTA-2019-06-24 - Last revision: 2019-07-17

Sodinokibi Ransomware Analysys
Then we analyze Sodinokibi version 1.1.

When the file infected from ransomware is executed, Sodinokibi generates a different mutex for each build, as an
example :

Global\D382D713-AA87-457D-DDD3-C3DDD8DEFBC96

A section of the file infected is decrypted with RC4, this section contains the configuration of the malware
structured in this way:

{
"pk" .

"pid" .
"Sub" .

o 14

" dbg" .

o 14

mwn
14
mww
14

"fast":
"wipe": ,

"wht "

y

"wfld":
: [,
"dmn": ,
"net": ,

"nbody":

"prcll

g

"fld":
"fls":
"ext":

(1,
(1,
[]

(1,

mww
14

"nname" : 7
"exp AL :

" img " .

In the table below we see the description of the fields:

Fields Description

pk Pubblic Key in base64

pid Identifier

sub Identifier

dbg Debug: true/false

fast True/False

wipe True/False

wht -> fld Folder exclusions

wht -> fls Files exclusions

wht -> ext Exclusion of the extension

wfld Wipe folder

prc Process to finish

dmn Domains C2

net Files encryption in the network: true/false

nbody Instructions for payment

nname {EXT}-readme.txt (dove EXT e I’estensione del file cifrato)
exp Exploit True/False

img Image contained in alert encryption on the desktop

-7-

Gianfranco Tonello | C.R.A.M. Centro Ricerche Anti-Malware

If “exp” filed is “true” then a 32 or 64 bit)5 .
. . . o e
shellcode is executed with the exploit CVE-2018- retn s Saio s
i i push esi
8453 through the elevation of privilege. il —h
test eax, eax
jz short loc_1368FC
¥ : v
=l
nov ebx, offset ShellCodedl ; “&"
noy esi, 9600h loc_1368FC:
jmp short loc_136906 moy ebx, offset ShellCode32_145748
l moy esi, 3600h
J
L &]
=
loc_136906:
push edi
push Loh

push 3008h
push esi
a

push
call Uirtualalloc
noy edi, eax
test edi, edi
jz short loc_13692D
esi
ebx
edi
_Wrp_CopyHen
esp, BCh
[ebp+arg_8]
edi ; esegue la shellcode

The next step is create a registry key REcfg if it is not already exist:

HKEY LOCAL MACHINE\SOFTWARE\recfg
If the key do not have permissions, it is created in HKEY_ CURRENT_USER.

The following values are created within REcfg:

o pk_key
e sk key
e 0 key

e rnd_ext
e stat

REvil - Sodinokibi
CTA-2019-06-24 - Last revision: 2019-07-17

Calculate the private and public keys
Now the private and the public keys are calculated, as we can see in the figure:

i i =

loc_132388:

lea eax, [ebp+var_B88]

push offset pk_key 14DSZA8

push eax

call _Calcola_Key Privata_Pubblica_1355B8 ; Calcola_Key Privata Pubblica {pKeyPriwata, pKeyFubblica}
push 28h

pop ebx ; ebx = 28h

lea eax, [ebp+var_4]

mov [ebp+var_C], ebx ; 2B6h

push eax

push ehx s ebx = 28h

lea eax, [ebp+var_88]

push eax

push offset pk_config 14D580

call sub_13597B ; pPBuff_Key = {key, buffer IH, size IN, size out)
mov edi, eax ; buffer output per sk_key
lea eax, [ebp+var_8]

push eax

push ebx

lea eax, [ebp+var_BE8]

push eax

push offset unk_14C828 ; master Key pubblica
call sub_ 135978 ; pBuff _HKey = (key, buffer IN, size IN, size out)
nouv esi, eax ; buffer output 8 key

lea eax, [ebp+var_BE8]

push ebx

push eax

call _Wrp_Zerolemory 135966

add esp, 38h

test edi, edi

jz loc_1324F4

Private and public keys are calculated in this way:

e 5

; Calcola_Key Privata Pubblica {pKeyPriwata, pKeyPubblica)
; Attributes: bp-based frame
_Calcola_Key Privata Pubblica_1355B8 proc near

arg_B= dword ptr 8
arg_4= dword ptr BCh

push ebp

mov ebp, esp

push [ebp+arg_B] ; key privata

call _Calcola_MNumeroRandom_28h_13568B

pop ecx

test eax, eax

jnz short loc_1355CA ; key pubblica

h A J
FEE lull e =]
pop ebp
retn loc_1355CA:

push [ebp+arg_4] ; key pubblica
push [ebp+arg_B] ; key privata
call sub_1355DC ; (pKeyPrivata, pKeyPubblica)
pop ecx
Xor eax, eax
pop ecx
inc eax
pop ebp
retn
_Calcola_Key Privata_Pubblica_1355B8 endp

Gianfranco Tonello | C.R.A.M. Centro Ricerche Anti-Malware

The private key was generated from random number of 256 bit, from the figure we can see the random number
generation subroutine PRNG (PseudoRandom Number Generators):

FIIE

XOr BCX, PCX
cmp [ebp+arg_4], ecx
jbe short loc_134622

FFE
mou esi, [ebp+arg_8]

o

Ll i =]

loc_134613:
®or edx, edx
‘3
Ll (i =]
loc 134615:
rdrand ebx
jb short loc_ 134628
[l e 5=
inc edx
cmp edx, 18h loc_134628:
jl short loc_134615| (mowv [ecx+esi], bl
| inc ecH
cmp ecx, [ebp+arg 4]
jb short loc_134613
g —

L J Y
FIE bl e =
bl eax, eax| [jmp short loc 134622

RandHumber_1345B5 endp

The function to generate PRNG use the hardware Intel vy Bridge, based on NIST’s SP 800-90 guidelines, through
the call to assembly rdrand instruction.

The random number generated, before it becomes private key, is elaborated in this way:

s =]

mov al, [esi+1Fh]

and byte ptr [esi], OF8h
and al, 3Fh

or al, 46h

mov [esi+1Fh], al

Xor eax, eax

inc eax

-10-

REvil - Sodinokibi
CTA-2019-06-24 - Last revision: 2019-07-17

At this point, starting from private key was generated public key. The private and public keys are generated using
ECC (Elliptic Curve Cryptography).

The keys (private and public) are both two numbers of 256 bit, which define two points on the elliptic curve.

The Exchange of the keys is made with the “Elliptic Curve Diffie-Hellman” (ECDH) method, where:

daPg = dgPa

Given G a fixed point of the curve, where:

e da = private key of A (secret random number)

e Pa=G*da=public key of A (G multiplied by da)
e dg = private key of B (secret random number)

e Pg=G*dg=publickey of B

Sodinokibi use elliptic curve “Curve25519”, in which G={9}, developed by Dan Bernestein, as supposed in the post
of Eric Klonowski (@noblebarstool) on Twitter.

After Sodinokibi has generated the ECC pair of keys in the memory, which we call dk_key (private key) and
pk_key (public key), the public key is stored in the recfg regisry key inside of the value pk_key:

HKEY LOCAL MACHINE\SOFTWARE\recfg

[pk_key] = Public Key

sk_key Data Structure
At this point sk_key data structure is generated by the call to Sub_13597B subroutine:

pBuff sk key = Sub 13597B (key pubblica json, key privata, size IN, size out)
The Sub_13597B aims to encrypt the private key generated inside sk_key data structure.
The Sub_13597B takes 4 input parameters:

e key pubblica_json: public key “pk” inside the json configuration section
e key privata: private key generated “dk”

e size IN: size of private key “dk”

e size out: size of sk_key structure

-11 -

Gianfranco Tonello | C.R.A.M. Centro Ricerche Anti-Malware

Sub_13597B subroutine execute the following steps:

sk_key

dwCheck

Private key (dk_key)
encrypted with AES
256 CTR (sha-3
(ECDH (dk_new, pk)),
random number)

New Public Key
(pk_new)

Random number

1. Allocate a buffer of 0x58 byte and copy the private key (dk_key) 0x0
“key_privata” from offset Ox4 into buffer
2. Calculate a new pairs of ECC keys, one private (dk_new) and one 0x4
public (pk_new)
3. Calculate dk_new*pk -> shared_key new (whre pk is public key
inside the json configuration section) and the result is “hashed” with
SHA-3.
4. Calculate a random number of 16 byte -> random_16, it will be used
as IV (initialization vector for AES) 0x24
5. Encrypts the buffer allocated from 0 to 0x24 via AES-256 CTR
through the IV initialization vector and SHA-3 (shared_key_new)
6. Copy the public key pk_new into buffer allocated at offset 0x24
7. Copy the random number random_16 into buffer allocated at offset
0x44
8. Calculate the CRC32 of the buffer allocated from 0 to 0x24 and save oxa4
the result at offset 0x54
Sub_13597B subroutine returns the pointer to buffer that is allocated to of
0x58 byte inside the sk_key data structure.
sk_key data structure, as we see on the right figure, will be stored in the 0x54
registry under the same name.
0x58
We can see the call to AES-256 in CTR mode, in the figure below:
push [ebpearg_u] 3 0X100 -> 256
push eax ; UAR 114 -> out expanded_key
call _Wrp_RES_256_Expand_Enc_Key_136A9F ; (out, 6x160, iN)
add esp, 0Ch
;;St Short 1oc_135608
Tt 3
esi
esi, [ebpearg_8]
edi
edi, [ebpevar_10]
; copio in var10 il contenuto di Buff In 2 (16h bytes)
edi, [ebpearg_10] ; size
edi, edi
short loc_1356CH
J 1
e
push ebx
mou ebx, [ebpearg C]
v ¥
PIE]
loc_135682: ; output
lea eax, [ebpevar_20]
push eax
lea eax, [ebpevar_10] ; randon number IV
push eax
lea eax, [ebpevar_114] ; expanded key
g:i’l‘ ;::_cm_woass ; ottengo var20 da vari1s e var1®
push 160h
pop esi
cnp edi, esi
lea eax, [ebpevar_20]
cmoub esi, edi
push esi ; 16h
push eax ; var 20 @ outuput di aes cipher
push ebx ; buffer in/out
call Cifra_con_Xor_13586D ; Cifra_con_Xor (buff in/out, key, size)
add esp, 18h
lea eax, [ebpevar_1]
add ebx, esi ; ebx = ebx + 0x10
sub edi, esi ; edi = edi - 0x10
¥
e
’;135683:
add byte ptr [eax], 1
jnz short loc_135688B
¥ i)
e i:__'_ra
')’: :::rt loc_1356B3| (loc_1356BB:
test edi, edi
jnz short loc_135682 ; output
L I I
v

-12 -

REvil - Sodinokibi
CTA-2019-06-24 - Last revision: 2019-07-17

AES CTR takes the following scheme:

AES CTR mode

IV+1 IV+2
Block Cipher Block Cipher Key — Block Cipher
Encryption Encryption y Encryption
i LD
Plaintext .,
Ciphertext Ciphertext Ciphertext

0_key Data Structure
0_key data structure is generated in a similar way, by the call to Sub_13597B subroutine:

pBuff 0 key = Sub 13597B (master key pubblica, key privata, size IN, size
out)

The procedure for generation of 0_key data structure is similar to that of 0_key
sk_key data structure, in this case it is used a “master public key” stored 0x0
inside an executable file instead of the public key pk (the one inside the oxd

json configuration section).

The “embedded” master public key is:
79 CD 20 FC E7 3E E1 B8 1A 43 38 12 Cl1 56 28 1A
04 C9 22 55 EO D7 08 BB 9F 0B 1F 1C B9 13 06 35

0x24
Inside the 0_key data structure we have the dk private key encrypted
through the “master public key”. .
. . . . New Public Key
0_key data structure, as we see in the figure below, will be saved in the (pk_new)
registry under the same name.

0x44

Random number

0x54

0x58

Registry Key “rnd_ext”
The value “rnd_ext” is stored inside the registry key REcfg, it contains the encrypted file extension randomly
calculated.

-13-

Gianfranco Tonello | C.R.A.M. Centro Ricerche Anti-Malware

Registry Key “stat”
The value “stat” is stored inside the registry key REcfg, it contains the following string formatted:

{"Ver":%d, "pid":"%S","SUb":"%S","pk":"%S","Uid":"%S","Sk":"%S","Unm":"%S","ne
t":"%S","grp":"%S","lng":"%sll,"broll:%S,"OS":"%S","bit":%d, "dsk":"%S","ext":"%
S"}

It is stored in “stat” in encrypted and base64 encoded form.

Name Description

ver Version of Sodinokibi

pid PID of json

sub SUB of json

pk PK of json

uid CRC32 di “processor brand string” e Volume Serial Number (8 bytes)
sk sk_key in BASE64

unm Username

net Name of computer

Grp Name of workgroup or domain

Ing ID language

bro True / False if ID language is a “friend”

Os Operating System

Bit Value: 86 or 64

Dsk Information of disk in base 64 (drive and free space)
Ext Extension of encrypted file

Countries considered “friends” on the basis of the “bro” value:

e Romania

e Russia
e Ukraine
e Belarus
e Estonia
e latvia

e Lithuania

e Tajikistan
e |ran
e Armenia

e Azerbaijan

e Georgia

e Kazakistan

e Kyrgyzstan

e Turkmenistan
e Uzbekistan

The Sodinokibi ransomware ends the current process if the keyboard language belong to the list of countries
considered "friends".

-14 -

REvil - Sodinokibi
CTA-2019-06-24 - Last revision: 2019-07-17

The “stat” formatted string is encrypted with a master public key stored inside a executable file.

The master public key “embedded” is:

36 7D 49 30 85 35 C2 C3 68 60 4B 4B 7A BE 83 53
AB E6 8E 42 F9 C6 62 A5 DO 6A AD C6 F1 7D F6 1D

Ransom instruction

Ransom instruction are prepared from the body, which is extracted from the “nbody” field of the json
configuration.

The body is formatted with the following value:

e uid
e rnd_ext
e staton base 64

The “uid” is the user ID calculated from CRC of “processor brand string” and Volume Serial Number, which is used
to compose the URL where to make the ransom payment:

e http://aplebzu47wgazapdgks6vrcvezenjppkbxbréwketfs6nféag2nmyoyd.onion/<uid>
e http://decryptor.top/<uid>

Terminate Processes and delete Shadow Copy

The processes listed in the JSON configuration under “prc” are killed and the Windows Shadow copy with the
following command are deleted:

cmd.exe /c vssadmin.exe Delete Shadows /All /Quiet & bcdedit /set {default}
recoveryenabled No & bcdedit /set {default} bootstatuspolicy
ignoreallfailures

Wipe
Then the malware checks the "wipe" value in the JSON configuration and if set to true it deletes all the files
contained in the folders that correspond to the "wfld" value of the JSON configuration.

File encryption
A Thread is created which is pending on function “GetQueuedCompletionStatus”.

Files on local disk and network folder are numbered (if the “net” parameter of JSON configuration is a “true”
value) then proceed with file encryption.

In every folder is created a .lock file and the instructions regarding the ransom with name {random extension}-
readme.txt.

Files and folders that correspond to the JSON "wht" field containing the subfields "fld", "fls" and "ext", which are
respectively for "folder", "files" and "extension" are excluded from encryption.

Here is an example:

-15-

Gianfranco Tonello | C.R.A.M. Centro Ricerche Anti-Malware

"wht": {

"£1d": ["google", "mozilla", "S$windows.~bt", "programdata",
"Srecycle.bin", "program files (x86)", "appdata", "msocache", "program
files", "windows.old", "Swindows.~ws", "application data", "perflogs",
"windows", "boot", "intel", "system volume information", "tor browser"],

"fls": ["bootsect.bak", "autorun.inf", "ntldr", "ntuser.dat.log",
"ntuser.ini", "boot.ini", "ntuser.dat", "bootfont.bin", "desktop.ini",
"thumbs.db", "iconcache.db"],

"ext": ["exe"]

For each file intended to encryption is generated a Salsa20 key, as follows:

push eax 5 var_28

call _Calcola_Key_Privata_Pubblica_1355B8 ; Calcola_Key Privata_Pubblica (pKeyPrivata, pKeyPubblica)
lea eax, [ebp+var_ 48]

push eax

lea eax, [ebp+var_20]

push offset pk_key_14D5A8 ; pk_key del registro

push eax ;5 var 28

call _Calcola_Uari468_135822 ; (Buffer IN, Key, Buffer OUT)

lea eax, [ebp+var_20]

push 26h

push eax

call _Wrp_ZeroMemory_135966

mov esi, [ebp+arg_0] ; struttura dati

lea eax, [ebp+var_40] ; Key di cifratura che viene copiata nella tabella master di Salsa2@
push 46h

push 166h

push eax

lea edi, [esi+168h]

push edi

call _ Set_Salsa_Tabella_136EA3

lea eax, [ebp+var_u0]

push 26h

push eax

call _Wrp_Z2eroMemory_135966

add esi, OF8h

push 8 ; size vettore

push esi ; Buffer Uettore Inizializzazione

call _Calcola_RandomNumber_13578B ; Calcola_ RandomNumber {(PBuffer, duSize)
push esi ; puntatore al Vettore di Inizializzazione IU
push edi ; edi punta alla struttura Dati offset 0x1088 Tbl Master Salsa
call _Set_IV_Tabella_Salsa_136ES85

add esp, 44h

push 26h ; Ssize

push ebx ; buffer

push (5]

call _CRC32_1356DC ; calcola in eax il CRC32 (val, buffer, size)
mov ecx, [ebp+arg_0] ; struttura dati

add esp, OCh

pop edi

mov [ecx+186h], eax ; crc32 del buffer D8

mov eax, dword_14D714

pop esi

mov [ecx+184h], eax

pop ebx

mov esp, ebp

pop ebp

retn

Encryption algorithm used by Sodinokibi is Salsa20.

-16-

REvil - Sodinokibi
CTA-2019-06-24 - Last revision: 2019-07-17

The encryption key for Salsa20 is obtained in this way:

1. Calculate a new pairs of ECC private/public keys (dk_new _file, pk_new_file)

2. Calculate SHA-3 (dk_new_file*pk_key) -> shared_key salsa (where pk_key is a public key stored inside
registry under pk_key voice). In shared_key _salsa we will obtained the key which is plugged in Salsa20
master table.

3. Calculate a random number of 8 byte for the initialization vector of the Salsa20 master table.

4. Composes the Salsa20 master table.

It is created in memory a data structure that holds:

e Handle of the file to be encrypted
e Sk key

o 0 key

e pk_new file

e |nitialization vector of Salsa20

e The CRC32 of pk_new_file

e Master table of Salsa20

This data structure is passed to the Thread created previously through the API functions:

e CreateloCompletationPort
e PostQueuedCompletionStatus

The thread is pending on the GetQueuedCompletionStatus API function, when it receives a new call it starts the
file encryption phase through the Salsa20 algorithm and then the following fields are saved in the data structure:
e Sk key
o 0 key
e pk_new file
e Initialization vector of Salsa20
e The CRC32 of pk_new_file

The size of the hanging part varies depending on Sodinokibi version. In versions 1.0 and 1.1 the length is OXEO
bytes while in version 1.2 it is OxE4 bytes.

-17 -

Gianfranco Tonello | C.R.A.M. Centro Ricerche Anti-Malware

In the figure we can see the encryption scheme of Sodinokibi version 1.1:

REvil — Sodinokibi v. 1.1: encryption scheme

Private key Public key sk_key 0_key File encrypted
0x0 0x0 0x0
dwCheck
private key public key Oxet e File encrypted with
dk_k k_k
(dk_key) (pk_key) Private key (dk_key) Salsa20
encrypted with AES)
—— 256 CTR (sha-3 The Salsa20 key:
P 4 dk K SHA-3 (dk_new _file
json (pk) (ECDH (dk_new, pk)), Lt
random number) pk_key) =
shared_key_salsa
- 0x24 0x24 End
master public original
key file
New Public Key New Public Key
k_new k_new
new private new public (pk_new) {pk_new) o
key (dk_new) key (pk_new) HOX
0x44 0x44 0_key
+0x58
- - Random number Random number pk_new_file
new private new public +0x20
key file key file 0x54 0x54 IV Salsa20
3 - + 0x08
(dk_new_file) B (pk_new_file) CRC32
+0x04
0x58 0x58 + 0x04

Desktop image

At the end of the files encryption, the next step is to modify the desktop image , which we can see in the figure
below:

The image is generated using API Al ol volclilesare ererypred]
functions for the graphics and the text is Find xm57n1-readme.txt and follow instuctions
inserted using “DrawText” function, that
is loaded in “img” field through JSON
configuration.

-18-

REvil - Sodinokibi
CTA-2019-06-24 - Last revision: 2019-07-17

C2 Server
We find a list of 1079 domains inside the JSON configuration. Sodinokibi makes a connection with each domain of
this list generating a URL through a DGA algorithm using the following terms:

Terms Extension
e wp-content * jpg
e pictures o gif
® news e png
® pics
e admin
e data
e temp
e graphic
e game
e static
e assets
e tmp
e uploads
e images
e include
e image
e content

https://<host>/<term 1>/<term 2>/<random chars>.<extension>
Some examples:

e https://stagefxinc.com/wp-content/pictures/pmkapi.jpg
e https://birthplacemag.com/admin/pictures/hpxxgbak.gif
e https://clemenfoto.dk/news/pics/ohxkyt.gif

e https://wineandgo.hu/admin/pics/ahlpbrzo.jpg

e https://lexced.com/data/temp/hpttgdyg.png

Sodinokibi transmits through a "POST" to each domain of the list the "stat" data structure in encrypted form.
From our analysis only the following domains responded with "HTTP / 1.1 200 OK":

www.zuerich-umzug.ch geitoniatonaggelon.gr
belofloripa.be insane.agency
www.soundseeing.net acb-gruppe.ch
utilisacteur.fr www.cardsandloyalty.com
www.airserviceunlimited.com www.sbit.ag
www.mediahub.co.nz yourhappyevents.fr
WWwWw.irizar.com tieronechic.com
www.cleanroomequipment.ie mariajosediazdemera.com
www.pinkxgayvideoawards.com www.skyscanner.ro
www.rhino-turf.com 11.in.ua

mike.matthies.de funworx.de
drbenveniste.com www.omnicademy.com
scotlandsroute66.co.uk www.bratek-immobilien.de
m2graph.fr metroton.ru

But this does not mean that one of these domains is that of Sodinokibi C2 Server.

-19-

Gianfranco Tonello | C.R.A.M. Centro Ricerche Anti-Malware

Ransom payment
According to the ransom instructions, the victim have to connect to the following domains for the payment
methods:

e http://aplebzu47wgazapdgks6vrcvezenjppkbxbréwketfs6nféag2nmyoyd.onion/<uid>
e http://decryptor.top/<uid>

Victims are requested to enter first thing, the random extension and the “Key” value contained in ransom
instructions (it is the “stat” version encrypted on base 64).

Howr to decrypt files?

When victims input this data the payment amount is generated and are provided information on how to purchase
BitCoin, and in addition a support chat is included, as we can see in the following images:

6 days, 23:56:16

The wallet for payment is generated automatically for each victim, the ransom price is $ 2,500 it doubles to $
5,000 if payment is not made within 7 days.

How does decryption work?

The only way to recover the encrypted files by Sodinokibi is with a “dk_key” private key. The decryption key is
encrypted inside “sk_key” and “0_key”.

The attacker recovered “dk_key” in these ways:
1. Decrypting sk_key
2. Decrypting 0_key

-20-

REvil - Sodinokibi
CTA-2019-06-24 - Last revision: 2019-07-17

Now in order to decrypt “sk_key” the attacker use a secret key, the sk_key
private key “dk” , which only they know. The private key “dk” is the 0x0

symmetric key of the public key “pk” stored in the json configuration. dwCheck
The public key “pk_new” is put in unencrypted way inside “sk_key” 0x4

structure.

Private key (dk_key)
encrypted with AES
256 CTR (sha-3
(ECDH (dk_new, pk)),
random number)

Itis calculated the value: dk * pk_new = shared_key_new
The “shared_key_new” is the same as: dk_new*pk.

The private key (dk_key) is encrypted with AES-256 CTR through the
"SHA-3 (shared key new"andthe random number (IV)whichison
offset 0x44. 0x24
Decrypting the buffer from 0x4 to 0x24 with AES-256, through "SHA-3
(shared_key_new)" and the random number youget"dk key".

New Public Key
Now the same procedure can be performed to decrypted “0_key”, in this (pk_new)
case is used the master private key, which only the authors of Sodinokibi

know, to get “dk_key”. .

Random number

0x54

0x58

Now we know dk_key so to determinate the encryption key used in

Salsa20 we execute the following operation:

SHA-3 (dk_key *pk_new _file) = shared_key_salsa 0x0
Where the public key pk_new_file is put in unencrypted way at the end

of the encrypted file. File encrypted with
Salsa20

File encrypted

shared_key_salsa is also equals to SHA-3 (dk_new_file*pk_key)
The Salsa20 key:

SHA-3 (dk_new _file
* pk_key) =
shared key salsa

In shared_key_salsa we will have the key that is inserted in the Salsa20
master table.
Now it is possible to decrypt the files through shared_key_salsa.

End

original

file
0_key

+ 0x58

pk_new_file
+ 0x20
IV Salsa20

+ 0x08
+0x04 LI

+ 0x04

-21-

Gianfranco Tonello | C.R.A.M. Centro Ricerche Anti-Malware

REvil — Sodinokibi v. 1.1: decryption scheme

Private key Public key sk_key 0_key File encrypted
0x0 0x0 0x0
dwCheck
private key 0x4 0x4 File encrypted with
dk_ke
(dk_key) Private key (dk_key) 20
encrypted with AES The Salsa20 k
. . e Salsa20 key:
private key 12 T e SHA-3 (dk_key *
json (dK) (ECDH (dk_new, pk)), K Fle) _
random number) pk_new_trie) =
shared_key_salsa
0x24 0x24 End

“master

original
private key file
New Public Key New Public Key
new public (pk new) (pk new)
key (pk_new) +0x58
0x44 0x44 0_key
+ 0x58
- Random number Random number pk_new._file
new public +0x20
key file 0x54 0x54 IV Salsa20
(pk_new_file) +0x08 CRC32
+ 0x04
0x58 0x58 + 0x04
Versions
The authors of Sodinokibi have developed the following versions:
Version Date Size appending data
1.0a 2019-04-23 Oxe0
1.0b 2019-04-27 Oxe0
1.0c 2019-04-29 Oxe0
1.1 2019-05-05 Oxe0
1.2 2019-06-10 Oxe4
13 2019-07-08 Oxe4d
Version 1.2

In version 1.2 the registry key "sub_key " has been added which contains the public key of the json configuration
(pk) and the data size in the encrypted files is Oxe4 bytes, where an additional control dword with value 0 has
been added.

In version 1.3 there is a new field inside to json configuration called “svc”, the field contains the list of services to
stop.

-22-

REvil - Sodinokibi
CTA-2019-06-24 - Last revision: 2019-07-17

Version 1.3
In this version has been added a field called “svc” in
the json config. This field contains a list of services to 16020n .
. § dword ptr [edi]

delete, as we can see in the figure. ebx
OpenServiceW
edx, eax
[ebp+hService], edx
edx, edx
short loc_FDC3798

il s 5
push 6
pop ecx
xor eax, eax
mov [ebp+var_38], esi
lea edi, [ebp+var_34]
rep stosd
lea eax, [ebp+var_38]
push eax
push SERUICE_CONTROL_STOP
push edx
call ControlService
mov edi, [ebp+hService]
push edi ; hService
test eax, eax
jz short loc_FDC378A
call DeleteService
test eax, eax
jz short loc_FDC3789
Furthermore to verify if the victim is from a “friend” 233“ ggg %5
country, in addition to check of language of keyboard sub esp, 48h
push esi
has been added checks on the default language and on mou [ebp+uar_ 48], 419h 3| LANG_RUSSIAN
. . 327
system language, as we can see in the figure. 5 (Tabhesaanr we
mov [ebp+var_3C], 428h
mov [ebp+var_38], 42Bh
mov [ebp+var_34], 42Ch
mov [ebp+var_30], 437h
mov [ebp+var_2C], 43Fh
mov [ebp+var_28], 440h
mov [ebp+var_24], 442h
mov [ebp+var_28], 443h
mov [ebp+var_1C], 444h
mov [ebp+var_18], 818h
mov [ebp+var_14], 819h
mov [ebp+var_18], 82Ch
mov [ebp+var_C], 843h
nov [ebp+var_8], 45Ah
nov [ebp+uar_4], 28061h ; SUBLANG_ARABIC_SYRIA
call GetUserDefaultUILanguage
mouzx esi, ax
call GetSystemDefaultUILanguage
mouzx ecx, ax
xor eax, eax

It uses WQL to determinate the creation of processes:

SELECT * FROM InstanceCreationEvent WITHIN 1 WHERE TargetInstance ISA
'Win32 Process'

Furthermore it uses a new key of registry instead of “REcfg”:
e HKEY_LOCAL_MACHINE\SOFTWARE\QtProject\OrganizationDefaults
Inside to QtProject\OrganizationDefaults are saved the following values:

-23-

Gianfranco Tonello | C.R.A.M. Centro Ricerche Anti-Malware

® pvg

e sxsP

e BDDC8

o f7gVD7

e Xu7Nnkd

e sMMnxpgk

Table of comparison for the version 1.2 and 1.3:

Vers. 1.2: REcfg Vers. 1.3: QtProject\OrganizationDefaults
sub_key pvg

pk_key sxsP

sk_key BDDC8

0 _key f7gvD7

rnd_ext Xu7Nnkd

stat sMMnxpgk

=24 -

REvil - Sodinokibi

CTA-2019-06-24 - Last revision: 2019-07-17

Telemetry

The trend of Sodinokibi malware campaigns has been monitored between April and July 2019.

In the table below we can see the campaigns monitored:

Data Campagna
25/04/2019
25/04/2019
25/04/2019
25/04/2019
25/04/2019

24/05/19
03/06/19

18/06/19
19/06/19

19/06/19
19/06/19
24/06/19
26/06/19
25/06/19
01/07/19

Campagna
Oracle Weblogic
Oracle Weblogic
Oracle Weblogic
Oracle Weblogic
Oracle Weblogic

RDP
Malpam

Malspam — Booking
Malspam — DHL

Winrar
Winrar
RigeK
Targeting South Korea
Malspam — Booking
RigEK

PK
nAjfiPcolyelwwCkM1hLhXo5HUQMtrAB+7m8eHzerho=
nAjfiPcolyelwwCkM1hLhXo5HUQMtrAB+7m8eHzerho=
nAjfiPcolyelwwCkM1hLhXo5HUQMtrAB+7m8eHzerho=
nAjfiPcolyelwwCkM1hLhXo5HUQMtrAB+7m8eHzerho=
nAjfiPcolyelwwCkM1hLhXo5HUQMtrAB+7m8eHzerho=
a54FxmOM4c90SBAgCVw4ykJv62ImcbOvaHKwO80Kegl=
a54FxmOM4c90SBAgCVw4ykJv62ImcbOvaHKwO80Kegl=
a54FxmOM4c90SBAgCVw4ykJv62imcbOvaHKwO80Kegl=
N3IgbCUZr/g/IXgALTUaGwW7K8ESUVA+CcRa5zto0xg0A=
TmrkEVU29HHz1nfhwl0C6p4USsyGzUCmMcyAJQnZSHyY=
4hKQrOidB69uTPA/7uaOuTipRsh2y956 X 1K+jyyLUjA=
eY19jfld2wirBiZk/ABspJesaySHE6q+XbmHRQ55NBKE=
wO0qhPco083YCbvmGI4ySs7ZiTUaT5YAKODXIM/hOnjQ=
XewB0HCSStmaZwEnoW4XuhBiy5I3SyKugEH5PM4P7RA=
io3chxJXtLLzcA1anNSmn/tKeldSpGV/mVugqwvms3g=
eYI9jfld2wirBiZk/ABspJesaySH6q+XbmHRQ55NBKE=
ClwOJSOhyaamJ5eplhJrLNSUJdwH29Ky8t+Yn3Welzg=
duPwGxBEa19yzAI27JhOVXw1550ZWe3CWVbWJ7uwhBU=
2Dj6WyDEOK(ff6CVJadXjX+ogDuXN/XnldrVWifa6/B0=
pzprC6xbhNFhM/+qJI6gCrd2pnCgyRdai+B890UhRWAW=
m7cFgOR]jIUsRFy4odzerL k+3i0TWITNGLASyBRjQIMQ=
pzprC6xbhNFhM/+qJI6gCrd2pnCgyRdai+B890UhRWAW=
U5gGGTWKYrgvh5QFI+53Jc73aj8ntwjj0C4ai0/2A+jg=
N9tiPqA45L8cXACRHIBAJFayV8M5SMEF4JjppDRO+0HU=
pzprC6xbhNFhM/+qJI6gCrd2pnCgyRdai+B890UhRWAW=
p+iVJIIHGF12r1Q7fPSAF3Y36m0DmS4bbOtZMLKszAI=
1LSb3+cEVUYZYvzU06n8wWFiQCcZYZOMrZWUCYOHN7TY=
XWQXz00r53eh4p5JZnqYlilQ+tPjrri5z6Y+Ocvw0=
F5YmMIEK1fBNSE7 SkF7sRqBES+QRpLLYtkOONCITZWM=
KtKn8udbrebS5jbzcimIkGAbGMIWX9Ks85rOWrmJ23Q=
JD6pLIWUHIEoWBKadIZ4A78CLM8I0UKIzdzZW7XautWE=
W2TWFCLDTFMuBvSVNBeASNHYUM7 SRRLt+hIuKWXk8mE=
PdQtqjCAKZmIJn1Fbw1ZGic+XVzOOTwtdGm1gdXGsXg=
X5KVRMdkoLhmeigRMY9Ve4j+/3uVeO0jDgMAM4V22mA=
XewB0HCSStmaZwEnoW4XuhBiy5I3SyKugEH5PM4P7RA=
ISVNLPYVd04yhjQWFntNHZ0bsHYz2DzRIF+HjkQUTmE=
JsIMSQ5X8GHGIHDYNSEBzRCDIONrROtet7eKc6ptCk=
Clw0OJSOhyaamJ5eplhJrLNSUJdwH29Ky8t+Yn3Welzg=
JsImSQ5X8GHGIHDYNSEBzRCDIONrROtet7eKc6ptCk=
wBmw6B6IFMUJDMNKSY4RQDLCGX6MPgfNXIaY42EhURKM=
VYOXI2Z84mknj8GgTaOGyi9eAgOKvEcTvqCPE3Jkg=
VYOXI2Z84mknj8GgTaOGyi9eAgOKv8cTvqCPE3Jkg=
VYOX12Z84mknj8GgTaOGHyi9eAgOKvBcTvqCPE3Jkg=
qmLSnN9s+6ZosKo1tV0sbdd6R|BKuJ4pkq66+7tRWHY=
wBmwBBIFMUJDNKSY4RQDLCGX6MPgfNXIaY42EhURKM=
RJLY2jLnGa3gAJx5s3sIwl0NZjJFSxHjZgDYwHKaBI=
Zrui05IT0bzVjJv7WuNIg6PZyXjBMEStA2e SxQT8TjY=

40

27

27

SUB Versione Data compilazione

607

1.0a
1.0a
1.0a
1.0a
1.0a
1.0b
1.0c
1.0c

2019-04-23 18:21:53
2019-04-23 18:21:53
2019-04-23 18:21:53
2019-04-23 18:21:53
2019-04-23 18:21:53
2019-04-27 18:11:51
2019-04-29 19:06:06
2019-04-29 19:06:06
2019-04-29 19:06:06
2019-04-29 19:06:06
2019-05-05 17:38:48
2019-05-19 18:08:46
2019-05-22 18:42:29
2019-05-22 18:42:29
2019-05-22 18:42:29
2019-05-22 18:42:29
2019-05-24 14:41:21
2019-05-24 14:41:21
2019-05-24 14:41:21
2019-05-24 14:41:21
2019-06-03 18:09:45
2019-06-03 18:09:51
2019-06-03 18:09:51
2019-06-03 18:09:51
2019-06-03 18:09:51
2019-06-03 18:09:51
2019-06-03 18:09:51
2019-06-03 18:09:51
2019-06-03 18:09:51
2019-06-10 15:29:32
2019-06-10 15:29:32
2019-06-10 15:29:32
2019-06-10 15:29:32
2019-06-10 15:29:32
2019-06-10 15:29:32
2019-06-10 15:29:32
2019-06-10 15:29:32
2019-06-10 15:29:32
2019-06-18 19:36:45
2019-06-18 19:36:45
2019-06-18 19:36:45
2019-06-18 19:36:45
2019-06-18 19:36:45
2019-06-18 19:36:45
2019-06-18 19:36:45
2019-06-24 15:53:35
2019-06-24 15:53:35

The fields from the table are the following:

NouhkwNRE

Campaign Date
Type of Campaign
PK (public key inside the JSON configuration)
PID present in JSON configuration

SUB present in JSON configuration
Sodinokibi version
Date the master file of Sodinokibi is compiled

-25-

Gianfranco Tonello | C.R.A.M. Centro Ricerche Anti-Malware

PID field identify the group has acquired the service Sodinokibi ransomware (RAAS). SUB field probably identify
“SUBSCRIPTION” that is the period of validity of the service.

The pairs of PID & SUB with identical value have the same public key (PK), how we can see in the case of PID:7 and
SUB: 3.

The campaign with PID 7 was the first to use Oracle Weblogic vulnerability to distribute the ransomware on 25
April 2019 (SUB:3), the same group seems to be associated with the Watering Hole attack campaign to distributor
of WinRar in Italy on 19" June 2019 with a new SUB: 474.

As we can see, the group with PID: 7 has purchased more subscription periods. Using the three parameters PID-
SUB-PK, one can identify the campaign associated with the same actor.

Until early July of this year, the PID 40 was the highest value, this suggests that there are at least 40different
groups. The highest value of SUB was 607 which could indicate that at least 607 subscription periods have been
purchased.

We compare in the graphic here below, the date of compilation of the malware and the SUB value present in json
configuration. It is possible to see how the curve growth strongly suggesting that the Sodinokibi CryptoMalware is
distributed with the “as-a-service” method.

650 607

23/ 04/ 19 27/04/ 19 29/04/ 19 79/05/ 19 22/05/ 19 24/05/ 19 03/06/ 19 70/06/ 19 78/06/ 19 24/06/ 19

DATA

-26 -

REvil - Sodinokibi
CTA-2019-06-24 - Last revision: 2019-07-17

Conclusion

The authors of Sodinokibi are individuals with a certain level of technical knowledge and probably this
ransomware is not their first creation and it is actively developed.

This project is developed to be distributed with model RaaS (Ransomware-as-a-Service).

Sodinokibi ransomware uses for file encryption the algorithm Salsa20 with a key exchange method based on
ECDH.

Sodinokibi operation spreads wide in the last month, through a different methods to distribute the ransomware
via Malspam, RigEK, RDP attacks, etc. The attackers with the recent decision to shutting down GandCrab
Ransomware operation left a hole, that seem to exploited by Sodinokibi.

10C
MDS5:

DB42F17991A7BA10218649B978D78674
E713658B666FF04C9863EBECB458F174
16863F6727BC5DD44891678EBCA492D2
FD3F3AF76D31D8F134E2E02463D89D29
6E543C13594F987A6051BC3D9456499F
CCFDE149220E87E97198C23FB8115D5A
FB68A02333431394A9A0CDBFF3717B24
692870E1445E372DDD82AEDD2D43F9B8
DB6D3A460DEDEY7CATESCS5FBFAEF3AT2
48A673157DA3940244CEODFB3ECB58E9
79F2341510D9FB5291AEFC3E69D18253
3DF42FA9732864A9755F5C8FB7ED456A

URL:

aplebzud7wgazapdgksévrcvoezcenjppkbxbrowketf56nf6ag2nmyoyd.onion

decryptor. top

-27 -

