
- 1 -

CYBER THREAT ANALYSIS

REvil - Sodinokibi

Technical analysis and Threat Intelligence Report

Article written by:
 Gianfranco Tonello
 Michele Zuin
 Federico Girotto

CTA-2019-06-24

Last revision: 2019-07-17

REvil - Sodinokibi
CTA-2019-06-24 - Last revision: 2019-07-17

- 3 -

Summary
Introduction .. 5

Infection Vector ... 5

Sodinokibi Ransomware Analysys .. 7

Calculate the private and public keys ... 9

sk_key Data Structure .. 11

0_key Data Structure ... 13

Registry Key “rnd_ext” ... 13

Registry Key “stat” ... 14

Ransom instruction .. 15

Terminate Processes and delete Shadow Copy... 15

Wipe .. 15

File encryption ... 15

Desktop image ... 18

C2 Server ... 19

Ransom payment ... 20

How does decryption work? .. 20

Versions... 22

Version 1.2 .. 22

Version 1.3 .. 23

Telemetry .. 25

Conclusion ... 27

IOC .. 27

REvil - Sodinokibi
CTA-2019-06-24 - Last revision: 2019-07-17

- 5 -

Introduction
Sodinokibi ransomware, also known as REvil, made it first appearance in April 2019, where it looks to exploit the
Oracle WebLogic Server vulnerability to propagate itself.

C.R.A.M. (Research Center Anti-Malware) of TG Soft has analyzed ransomware evolution in the last few months.

In Italy it made first appearance in Mat 24th 2019, with a RDP attack, as
we posted in the tweet of May 28th 2019:

The authors of Sodinokibi ransomware, even if they are the first versions
of their creation, seem to have a long experience in this threats of cyber-
crime.

Some researchers have identified the similarities with GandCrab
ransomware, whose project was shut down in beginning June. It seems
that Sodinokibi ransomware is the right candidate to fill the hole left
behind GandCrab.

Infection Vector
Sodinokibi ransomware uses different methods of propagation:

• Oracle WebLogic Server Vulnerability
• RDP attacks
• Spam Campaigns
• Watering hole
• Exploit kit and malvertising

In Italy, we have observed that Sodinokibi ransomware used various methods of propagation. All such methods
have been found in Italy except Oracle WebLogic Server vulnerability.

The first attack that we have record was on 24th May 2019, in this case the infection vector was through RDP
attack. This kind of infection vector execute a brute force on credentials, it has already been used by other
ransomware as Dharma.

Interestingly, the IP 151.106.56[.]254 used by cyber criminal to access via RDP was the same IP identified in other
RDP attacks in June of this year.

Affiliates have used spam campaigns to distributed Sodinokibi ransomware, that was recorded in June. A new
campaign was discovered which deals:

• Booking.com
• DHL

 “Booking.com” campaign in the summer months, is very apt choose with the summer holiday season approaches,
it may induce the victims to open the attachment.

In the images below, we can see the two malspam campaigns of Sodinokibi.

Gianfranco Tonello | C.R.A.M. Centro Ricerche Anti-Malware

- 6 -

In Italy the first case of watering hole was recorded on website “winrar.it” a distributor of WinRar in Italy. For the
whole day on Wednesday the 19th June was downloaded Sodinokibi instead of setup of WinRar.

In 2016 “winrar.it” website was already attacked by APT StrongPity, here too this was watering hole attack, in
which the setup of WinRar was modified to include and downloaded also StrongPity spy malware.

If in 2016 the attack on “winrar.it” was organized by a professional cyber-espionage organization, in the attack of
this year the attackers have replaced the setup of WinRar with Sodinokibi. Who downloaded WinRar in the
afternoon of 19th June, could find something strange in the downloaded file, the icons, actually, are not like the
WinRar ones, as we can see in the figures below:

In addition, the execution of file does not downloaded WinRar, as has been the case of StronPity ransomware.

Attackers have poorly exploited the watering hole attack to winrar.it.

In other cases involving the spread of Sodinokibi , registered in Italy on 7th June 2019, were utilized malvertising
attack .

The authors of Sodinokibi seem to be very active in spreading the ransomware.

REvil - Sodinokibi
CTA-2019-06-24 - Last revision: 2019-07-17

- 7 -

Sodinokibi Ransomware Analysys
Then we analyze Sodinokibi version 1.1.

When the file infected from ransomware is executed, Sodinokibi generates a different mutex for each build, as an
example :

Global\D382D713-AA87-457D-DDD3-C3DDD8DFBC96
A section of the file infected is decrypted with RC4, this section contains the configuration of the malware
structured in this way:

{
 "pk": "",
 "pid": "",
 "sub": "",
 "dbg": ,
 "fast": ,
 "wipe": ,
 "wht": {
 "fld": [],
 "fls": [],
 "ext": []
 },
 "wfld": [],
 "prc": [],
 "dmn": "",
 "net": ,
 "nbody": "",
 "nname": "",
 "exp": ,
 "img": ""
}

In the table below we see the description of the fields:

Fields Description
pk Pubblic Key in base64
pid Identifier
sub Identifier
dbg Debug: true/false
fast True/False
wipe True/False
wht -> fld Folder exclusions
wht -> fls Files exclusions
wht -> ext Exclusion of the extension
wfld Wipe folder
prc Process to finish
dmn Domains C2
net Files encryption in the network: true/false
nbody Instructions for payment
nname {EXT}-readme.txt (dove EXT è l’estensione del file cifrato)
exp Exploit True/False
img Image contained in alert encryption on the desktop

Gianfranco Tonello | C.R.A.M. Centro Ricerche Anti-Malware

- 8 -

If “exp” filed is “true” then a 32 or 64 bit
shellcode is executed with the exploit CVE-2018-
8453 through the elevation of privilege.

The next step is create a registry key REcfg if it is not already exist:

HKEY_LOCAL_MACHINE\SOFTWARE\recfg
If the key do not have permissions, it is created in HKEY_CURRENT_USER.

The following values are created within REcfg:

• pk_key
• sk_key
• 0_key
• rnd_ext
• stat

REvil - Sodinokibi
CTA-2019-06-24 - Last revision: 2019-07-17

- 9 -

Calculate the private and public keys
Now the private and the public keys are calculated, as we can see in the figure:

Private and public keys are calculated in this way:

Gianfranco Tonello | C.R.A.M. Centro Ricerche Anti-Malware

- 10 -

The private key was generated from random number of 256 bit, from the figure we can see the random number
generation subroutine PRNG (PseudoRandom Number Generators):

The function to generate PRNG use the hardware Intel Ivy Bridge, based on NIST’s SP 800-90 guidelines, through
the call to assembly rdrand instruction.

The random number generated, before it becomes private key, is elaborated in this way:

REvil - Sodinokibi
CTA-2019-06-24 - Last revision: 2019-07-17

- 11 -

At this point, starting from private key was generated public key. The private and public keys are generated using
ECC (Elliptic Curve Cryptography).

The keys (private and public) are both two numbers of 256 bit, which define two points on the elliptic curve.

The Exchange of the keys is made with the “Elliptic Curve Diffie-Hellman” (ECDH) method, where:

 dAPB = dBPA
Given G a fixed point of the curve, where:

• dA = private key of A (secret random number)
• PA = G*dA = public key of A (G multiplied by dA)
• dB = private key of B (secret random number)
• PB = G*dB = public key of B

Sodinokibi use elliptic curve “Curve25519”, in which G={9}, developed by Dan Bernestein, as supposed in the post
of Eric Klonowski (@noblebarstool) on Twitter.

After Sodinokibi has generated the ECC pair of keys in the memory, which we call dk_key (private key) and
pk_key (public key), the public key is stored in the recfg regisry key inside of the value pk_key:

HKEY_LOCAL_MACHINE\SOFTWARE\recfg

[pk_key] = Public Key

sk_key Data Structure
At this point sk_key data structure is generated by the call to Sub_13597B subroutine:

pBuff_sk_key = Sub_13597B (key_pubblica_json, key_privata, size IN, size out)
The Sub_13597B aims to encrypt the private key generated inside sk_key data structure.

The Sub_13597B takes 4 input parameters:

• key_pubblica_json: public key “pk” inside the json configuration section
• key_privata: private key generated “dk”
• size IN: size of private key “dk”
• size out: size of sk_key structure

Gianfranco Tonello | C.R.A.M. Centro Ricerche Anti-Malware

- 12 -

Sub_13597B subroutine execute the following steps:
1. Allocate a buffer of 0x58 byte and copy the private key (dk_key)

“key_privata” from offset 0x4 into buffer
2. Calculate a new pairs of ECC keys, one private (dk_new) and one

public (pk_new)
3. Calculate dk_new*pk -> shared_key_new (whre pk is public key

inside the json configuration section) and the result is “hashed” with
SHA-3.

4. Calculate a random number of 16 byte -> random_16, it will be used
as IV (initialization vector for AES)

5. Encrypts the buffer allocated from 0 to 0x24 via AES-256 CTR
through the IV initialization vector and SHA-3 (shared_key_new)

6. Copy the public key pk_new into buffer allocated at offset 0x24
7. Copy the random number random_16 into buffer allocated at offset

0x44
8. Calculate the CRC32 of the buffer allocated from 0 to 0x24 and save

the result at offset 0x54
Sub_13597B subroutine returns the pointer to buffer that is allocated to of
0x58 byte inside the sk_key data structure.
sk_key data structure, as we see on the right figure, will be stored in the
registry under the same name.

We can see the call to AES-256 in CTR mode, in the figure below:

REvil - Sodinokibi
CTA-2019-06-24 - Last revision: 2019-07-17

- 13 -

AES CTR takes the following scheme:

0_key Data Structure
0_key data structure is generated in a similar way, by the call to Sub_13597B subroutine:

pBuff_0_key = Sub_13597B (master_key_pubblica, key_privata, size IN, size
out)
The procedure for generation of 0_key data structure is similar to that of
sk_key data structure, in this case it is used a “master public key” stored
inside an executable file instead of the public key pk (the one inside the
json configuration section).

The “embedded” master public key is:
79 CD 20 FC E7 3E E1 B8 1A 43 38 12 C1 56 28 1A
04 C9 22 55 E0 D7 08 BB 9F 0B 1F 1C B9 13 06 35

Inside the 0_key data structure we have the dk private key encrypted
through the “master public key”.
0_key data structure, as we see in the figure below, will be saved in the
registry under the same name.

Registry Key “rnd_ext”
The value “rnd_ext” is stored inside the registry key REcfg, it contains the encrypted file extension randomly
calculated.

Gianfranco Tonello | C.R.A.M. Centro Ricerche Anti-Malware

- 14 -

Registry Key “stat”
The value “stat” is stored inside the registry key REcfg, it contains the following string formatted:

{"ver":%d,"pid":"%s","sub":"%s","pk":"%s","uid":"%s","sk":"%s","unm":"%s","ne
t":"%s","grp":"%s","lng":"%s","bro":%s,"os":"%s","bit":%d,"dsk":"%s","ext":"%
s"}

It is stored in “stat” in encrypted and base64 encoded form.
Name Description
ver Version of Sodinokibi
pid PID of json
sub SUB of json
pk PK of json
uid CRC32 di “processor brand string” e Volume Serial Number (8 bytes)
sk sk_key in BASE64
unm Username
net Name of computer
Grp Name of workgroup or domain
lng ID language
bro True / False if ID language is a “friend”
Os Operating System
Bit Value: 86 or 64
Dsk Information of disk in base 64 (drive and free space)
Ext Extension of encrypted file

Countries considered “friends” on the basis of the “bro” value:

• Romania
• Russia
• Ukraine
• Belarus
• Estonia
• Latvia
• Lithuania
• Tajikistan
• Iran
• Armenia
• Azerbaijan
• Georgia
• Kazakistan
• Kyrgyzstan
• Turkmenistan
• Uzbekistan

The Sodinokibi ransomware ends the current process if the keyboard language belong to the list of countries
considered "friends".

REvil - Sodinokibi
CTA-2019-06-24 - Last revision: 2019-07-17

- 15 -

The “stat” formatted string is encrypted with a master public key stored inside a executable file.

The master public key “embedded” is:

36 7D 49 30 85 35 C2 C3 68 60 4B 4B 7A BE 83 53
AB E6 8E 42 F9 C6 62 A5 D0 6A AD C6 F1 7D F6 1D

Ransom instruction
Ransom instruction are prepared from the body, which is extracted from the “nbody” field of the json
configuration.

The body is formatted with the following value:

• uid
• rnd_ext
• stat on base 64

The “uid” is the user ID calculated from CRC of “processor brand string” and Volume Serial Number, which is used
to compose the URL where to make the ransom payment:

• http://aplebzu47wgazapdqks6vrcv6zcnjppkbxbr6wketf56nf6aq2nmyoyd.onion/<uid>
• http://decryptor.top/<uid>

Terminate Processes and delete Shadow Copy
The processes listed in the JSON configuration under “prc” are killed and the Windows Shadow copy with the
following command are deleted:

cmd.exe /c vssadmin.exe Delete Shadows /All /Quiet & bcdedit /set {default}
recoveryenabled No & bcdedit /set {default} bootstatuspolicy
ignoreallfailures

Wipe
Then the malware checks the "wipe" value in the JSON configuration and if set to true it deletes all the files
contained in the folders that correspond to the "wfld" value of the JSON configuration.

File encryption
A Thread is created which is pending on function “GetQueuedCompletionStatus”.

Files on local disk and network folder are numbered (if the “net” parameter of JSON configuration is a “true”
value) then proceed with file encryption.

In every folder is created a .lock file and the instructions regarding the ransom with name {random extension}-
readme.txt.

Files and folders that correspond to the JSON "wht" field containing the subfields "fld", "fls" and "ext", which are
respectively for "folder", "files" and "extension" are excluded from encryption.

Here is an example:

Gianfranco Tonello | C.R.A.M. Centro Ricerche Anti-Malware

- 16 -

"wht": {
 "fld": ["google", "mozilla", "$windows.~bt", "programdata",
"$recycle.bin", "program files (x86)", "appdata", "msocache", "program
files", "windows.old", "$windows.~ws", "application data", "perflogs",
"windows", "boot", "intel", "system volume information", "tor browser"],
 "fls": ["bootsect.bak", "autorun.inf", "ntldr", "ntuser.dat.log",
"ntuser.ini", "boot.ini", "ntuser.dat", "bootfont.bin", "desktop.ini",
"thumbs.db", "iconcache.db"],
 "ext": ["exe"]
 }

For each file intended to encryption is generated a Salsa20 key, as follows:

Encryption algorithm used by Sodinokibi is Salsa20.

REvil - Sodinokibi
CTA-2019-06-24 - Last revision: 2019-07-17

- 17 -

The encryption key for Salsa20 is obtained in this way:

1. Calculate a new pairs of ECC private/public keys (dk_new_file, pk_new_file)
2. Calculate SHA-3 (dk_new_file*pk_key) -> shared_key_salsa (where pk_key is a public key stored inside

registry under pk_key voice). In shared_key_salsa we will obtained the key which is plugged in Salsa20
master table.

3. Calculate a random number of 8 byte for the initialization vector of the Salsa20 master table.
4. Composes the Salsa20 master table.

It is created in memory a data structure that holds:

• Handle of the file to be encrypted
• Sk_key
• 0_key
• pk_new_file
• Initialization vector of Salsa20
• The CRC32 of pk_new_file
• Master table of Salsa20

This data structure is passed to the Thread created previously through the API functions:

• CreateIoCompletationPort
• PostQueuedCompletionStatus

The thread is pending on the GetQueuedCompletionStatus API function, when it receives a new call it starts the
file encryption phase through the Salsa20 algorithm and then the following fields are saved in the data structure:

• Sk_key
• 0_key
• pk_new_file
• Initialization vector of Salsa20
• The CRC32 of pk_new_file

The size of the hanging part varies depending on Sodinokibi version. In versions 1.0 and 1.1 the length is 0xE0
bytes while in version 1.2 it is 0xE4 bytes.

Gianfranco Tonello | C.R.A.M. Centro Ricerche Anti-Malware

- 18 -

In the figure we can see the encryption scheme of Sodinokibi version 1.1:

Desktop image
At the end of the files encryption, the next step is to modify the desktop image , which we can see in the figure
below:

The image is generated using API
functions for the graphics and the text is
inserted using “DrawText” function, that
is loaded in “img” field through JSON
configuration.

REvil - Sodinokibi
CTA-2019-06-24 - Last revision: 2019-07-17

- 19 -

C2 Server
We find a list of 1079 domains inside the JSON configuration. Sodinokibi makes a connection with each domain of
this list generating a URL through a DGA algorithm using the following terms:

Terms Extension
• wp-content
• pictures
• news
• pics
• admin
• data
• temp
• graphic
• game
• static
• assets
• tmp
• uploads
• images
• include
• image
• content

• jpg
• gif
• png

https://<host>/<term 1>/<term 2>/<random chars>.<extension>

Some examples:

• https://stagefxinc.com/wp-content/pictures/pmkapi.jpg
• https://birthplacemag.com/admin/pictures/hpxxqbak.gif
• https://clemenfoto.dk/news/pics/ohxkyt.gif
• https://wineandgo.hu/admin/pics/ahlpbrzo.jpg
• https://lexced.com/data/temp/hpttgdyg.png

Sodinokibi transmits through a "POST" to each domain of the list the "stat" data structure in encrypted form.
From our analysis only the following domains responded with "HTTP / 1.1 200 OK":

www.zuerich-umzug.ch
belofloripa.be
www.soundseeing.net
utilisacteur.fr
www.airserviceunlimited.com
www.mediahub.co.nz
www.irizar.com
www.cleanroomequipment.ie
www.pinkxgayvideoawards.com
www.rhino-turf.com
mike.matthies.de
drbenveniste.com
scotlandsroute66.co.uk
m2graph.fr

geitoniatonaggelon.gr
insane.agency
acb-gruppe.ch
www.cardsandloyalty.com
www.sbit.ag
yourhappyevents.fr
tieronechic.com
mariajosediazdemera.com
www.skyscanner.ro
11.in.ua
funworx.de
www.omnicademy.com
www.bratek-immobilien.de
metroton.ru

But this does not mean that one of these domains is that of Sodinokibi C2 Server.

Gianfranco Tonello | C.R.A.M. Centro Ricerche Anti-Malware

- 20 -

Ransom payment
According to the ransom instructions, the victim have to connect to the following domains for the payment
methods:

• http://aplebzu47wgazapdqks6vrcv6zcnjppkbxbr6wketf56nf6aq2nmyoyd.onion/<uid>
• http://decryptor.top/<uid>

Victims are requested to enter first thing, the random extension and the “Key” value contained in ransom
instructions (it is the “stat” version encrypted on base 64).

When victims input this data the payment amount is generated and are provided information on how to purchase
BitCoin, and in addition a support chat is included, as we can see in the following images:

The wallet for payment is generated automatically for each victim, the ransom price is $ 2,500 it doubles to $
5,000 if payment is not made within 7 days.

How does decryption work?
The only way to recover the encrypted files by Sodinokibi is with a “dk_key” private key. The decryption key is
encrypted inside “sk_key” and “0_key”.

The attacker recovered “dk_key” in these ways:

1. Decrypting sk_key
2. Decrypting 0_key

REvil - Sodinokibi
CTA-2019-06-24 - Last revision: 2019-07-17

- 21 -

Now in order to decrypt “sk_key” the attacker use a secret key, the
private key “dk” , which only they know. The private key “dk” is the
symmetric key of the public key “pk” stored in the json configuration.
The public key “pk_new” is put in unencrypted way inside “sk_key”
structure.
It is calculated the value: dk * pk_new = shared_key_new
 The “shared_key_new” is the same as: dk_new*pk.

The private key (dk_key) is encrypted with AES-256 CTR through the
"SHA-3 (shared_key_new" and the random number (IV) which is on
offset 0x44.
Decrypting the buffer from 0x4 to 0x24 with AES-256, through "SHA-3
(shared_key_new)" and the random number you get "dk_key".

Now the same procedure can be performed to decrypted “0_key”, in this
case is used the master private key, which only the authors of Sodinokibi
know, to get “dk_key”.

Now we know dk_key so to determinate the encryption key used in
Salsa20 we execute the following operation:
SHA-3 (dk_key *pk_new_file) = shared_key_salsa
Where the public key pk_new_file is put in unencrypted way at the end
of the encrypted file.

shared_key_salsa is also equals to SHA-3 (dk_new_file*pk_key)

In shared_key_salsa we will have the key that is inserted in the Salsa20
master table.
Now it is possible to decrypt the files through shared_key_salsa.

Gianfranco Tonello | C.R.A.M. Centro Ricerche Anti-Malware

- 22 -

Versions
The authors of Sodinokibi have developed the following versions:

Version Date Size appending data
1.0a 2019-04-23 0xe0
1.0b 2019-04-27 0xe0
1.0c 2019-04-29 0xe0
1.1 2019-05-05 0xe0
1.2 2019-06-10 0xe4
1.3 2019-07-08 0xe4

Version 1.2
In version 1.2 the registry key "sub_key " has been added which contains the public key of the json configuration
(pk) and the data size in the encrypted files is 0xe4 bytes, where an additional control dword with value 0 has
been added.

In version 1.3 there is a new field inside to json configuration called “svc”, the field contains the list of services to
stop.

REvil - Sodinokibi
CTA-2019-06-24 - Last revision: 2019-07-17

- 23 -

Version 1.3
In this version has been added a field called “svc” in
the json config. This field contains a list of services to
delete, as we can see in the figure.

Furthermore to verify if the victim is from a “friend”
country, in addition to check of language of keyboard
has been added checks on the default language and on
system language, as we can see in the figure.

It uses WQL to determinate the creation of processes:

SELECT * FROM __InstanceCreationEvent WITHIN 1 WHERE TargetInstance ISA
'Win32_Process'

Furthermore it uses a new key of registry instead of “REcfg”:

• HKEY_LOCAL_MACHINE\SOFTWARE\QtProject\OrganizationDefaults

Inside to QtProject\OrganizationDefaults are saved the following values:

Gianfranco Tonello | C.R.A.M. Centro Ricerche Anti-Malware

- 24 -

• pvg
• sxsP
• BDDC8
• f7gVD7
• Xu7Nnkd
• sMMnxpgk

Table of comparison for the version 1.2 and 1.3:

Vers. 1.2: REcfg Vers. 1.3: QtProject\OrganizationDefaults
sub_key pvg
pk_key sxsP
sk_key BDDC8
0_key f7gVD7
rnd_ext Xu7Nnkd
stat sMMnxpgk

REvil - Sodinokibi
CTA-2019-06-24 - Last revision: 2019-07-17

- 25 -

Telemetry
The trend of Sodinokibi malware campaigns has been monitored between April and July 2019.

In the table below we can see the campaigns monitored:

The fields from the table are the following:

1. Campaign Date
2. Type of Campaign
3. PK (public key inside the JSON configuration)
4. PID present in JSON configuration
5. SUB present in JSON configuration
6. Sodinokibi version
7. Date the master file of Sodinokibi is compiled

Gianfranco Tonello | C.R.A.M. Centro Ricerche Anti-Malware

- 26 -

PID field identify the group has acquired the service Sodinokibi ransomware (RAAS). SUB field probably identify
“SUBSCRIPTION” that is the period of validity of the service.

The pairs of PID & SUB with identical value have the same public key (PK), how we can see in the case of PID:7 and
SUB: 3.

The campaign with PID 7 was the first to use Oracle Weblogic vulnerability to distribute the ransomware on 25
April 2019 (SUB:3), the same group seems to be associated with the Watering Hole attack campaign to distributor
of WinRar in Italy on 19th June 2019 with a new SUB: 474.

As we can see, the group with PID: 7 has purchased more subscription periods. Using the three parameters PID-
SUB-PK, one can identify the campaign associated with the same actor.

Until early July of this year, the PID 40 was the highest value, this suggests that there are at least 40different
groups. The highest value of SUB was 607 which could indicate that at least 607 subscription periods have been
purchased.

We compare in the graphic here below, the date of compilation of the malware and the SUB value present in json
configuration. It is possible to see how the curve growth strongly suggesting that the Sodinokibi CryptoMalware is
distributed with the “as-a-service” method.

REvil - Sodinokibi
CTA-2019-06-24 - Last revision: 2019-07-17

- 27 -

Conclusion
The authors of Sodinokibi are individuals with a certain level of technical knowledge and probably this
ransomware is not their first creation and it is actively developed.

This project is developed to be distributed with model RaaS (Ransomware-as-a-Service).

Sodinokibi ransomware uses for file encryption the algorithm Salsa20 with a key exchange method based on
ECDH.

Sodinokibi operation spreads wide in the last month, through a different methods to distribute the ransomware
via Malspam, RigEK, RDP attacks, etc. The attackers with the recent decision to shutting down GandCrab
Ransomware operation left a hole, that seem to exploited by Sodinokibi.

IOC
MD5:

DB42F17991A7BA10218649B978D78674
E713658B666FF04C9863EBECB458F174
16863F6727BC5DD44891678EBCA492D2
FD3F3AF76D31D8F134E2E02463D89D29
6E543C13594F987A6051BC3D9456499F
CCFDE149220E87E97198C23FB8115D5A
FB68A02333431394A9A0CDBFF3717B24
692870E1445E372DDD82AEDD2D43F9B8
DB6D3A460DEDE97CA7E8C5FBFAEF3A72
48A673157DA3940244CE0DFB3ECB58E9
79F2341510D9FB5291AEFC3E69D18253
3DF42FA9732864A9755F5C8FB7ED456A
URL:

aplebzu47wgazapdqks6vrcv6zcnjppkbxbr6wketf56nf6aq2nmyoyd.onion
decryptor.top

